If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-34t+16=0
a = 16; b = -34; c = +16;
Δ = b2-4ac
Δ = -342-4·16·16
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{33}}{2*16}=\frac{34-2\sqrt{33}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{33}}{2*16}=\frac{34+2\sqrt{33}}{32} $
| y=2+1/2 | | 3√m+10=34 | | -2+3y=-6y+33-5y | | -5-3y=-4y-29+3y | | 13-3y=2y-15-5y | | 531=(a×6)+21 | | -88.231=-6.17n | | 30+1/4=x | | 5/4(a-2)=20 | | 2b+5(2b+3)=75 | | 6x^2×13x+4=0 | | 2g−13=3. | | 3w+7=19. | | 2(-1)^3-3(-1)(2)=x | | 5x+4-4x=5 | | x–3x+4=3–9 | | 6=5/u-7 | | 8x+11=3x-39 | | 2/(3*x-4)-(1/20)=5/(6*x-8) | | -6x-8=24-6(5x-8) | | 8(1+3a)+4(-6-2)=-4a | | 2a-5=-9 | | 29-4x=3 | | x*(x+1)*(x+2)*(×+3)=3024 | | 8x/24+6x/24+9x/24+432/24=x | | -x+81=163 | | x=4x-7x+5 | | 0.24x+6.4=-0.17x+8.4 | | 4m+3(m+7)=-14 | | 5x-16=-9x+4 | | 5.50x+4.2=9.7 | | 3+1/9x=1/13x |